浙江专升本高等数学考试大纲(三)

编辑:李老师高考志愿助手
审敛法判别正项级数的敛散性。

3.理解任意项级数绝对收敛与条件收敛的概念。会用莱布尼茨(Leibnitz)判别法判别交错级数的敛散性。

(二)幂级数

1.理解幂级数、幂级数收敛及和函数的概念。会求幂级数的收敛半径与收敛区间。

2.掌握幂级数和、差、积的运算。

3.掌握幂级数在其收敛区间内的基本性质:和函数是连续的、和函数可逐项求导及和函数可逐项积分。

4.熟记ex,sinx,cosx,ln(1+x),的麦克劳林(Maclaurin)级数,会将一些简单的初等函数展开为x-x0的幂级数。

五、常微分方程

(一)一阶常微分方程

1.理解常微分方程的概念,理解常微分方程的阶、解、通解、初始条件和特解的概念。

2.掌握可分离变量微分方程与齐次方程的解法。

3.会求解一阶线性微分方程。

(二)二阶常系数线性微分方程

1.理解二阶常系数线性微分方程解的结构。

2.会求解二阶常系数齐次线性微分方程。

3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ)f(x),其中为x的n次多项式,为实常数;(Ⅱ),其中,为实常数,,分别为x的n次,m次多项式)。

六、向量代数与空间解析几何

(一)向量代数

1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。

2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。

3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。

(二)平面与直线

1.会求平面的点法式方程与一般式方程。会判定两个平面的位置关系。

2.会求点到平面的距离。

3.会求直线的点向式方程、一般式方程和参数式方程。会判定两条直线的位置关系。

4.会求点到直线的距离,两条异面直线之间的距离。

5.会判定直线与平面的位置关系。


中国点击率最高的一篇文章 !